Linkage of Cohen–Macaulay modules over a Gorenstein ring

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gorenstein Dimension of Modules over Homomorphisms

Given a homomorphism of commutative noetherian rings R → S and an S–module N , it is proved that the Gorenstein flat dimension of N over R, when finite, may be computed locally over S. When, in addition, the homomorphism is local and N is finitely generated over S, the Gorenstein flat dimension equals sup {m ∈ Z | Torm(E,N) 6= 0}, where E is the injective hull of the residue field of R. This re...

متن کامل

Periodic modules over Gorenstein local rings

It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...

متن کامل

Uniformly Secondary Modules over Commutative Ring

In [2] the notion of “uniformly ideal” was introduced and developed the basic theory. In this article we introduce and advance a theory which, in a sense, dual to that i.e, the notion of “uniformly secondary module”.

متن کامل

Gorenstein flat and Gorenstein injective dimensions of simple modules

Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...

متن کامل

Gorenstein Dimension of Modules

R ring (always commutative and Noetherian) (R,m,k) local ring with maximal ideal m and k = R/m L,M,N, . . . R-modules (always finitely generated) M HomR(M,R), the dual of M D(M) the Auslander dual of M (Definition 2) σM : M wM∗∗ the natural evaluation map; KM = Ker(σM ), CM = Coker(σM ) G-dimR(M),G-dim(M) Gorenstein dimension of M (Definition 16) G-dim(M) <loc ∞ M has locally finite Gorenstein ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2000

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(98)00167-4